

SASOL CHEMICALS (USA), LLC

2020 HWDIR EXEMPTION PETITION REISSUANCE REQUEST

MASTER TABLE OF CONTENTS

SECTION 1.0

SITE INFORMATION

1.0 Administrative Information	1-1
EXECUTIVE SUMMARY	1-1
1.1 Regulatory Classification	1-5
1.2 Site Description	1-10
1.2.1 General Identification Data	1-10
1.2.2 Adjacent Landowners and Mineral Owners	1-10
1.2.3 Minerals Rights Owners	1-11
1.2.4 Nature and Status of Well Activity	1-11
1.2.5 Facility Nomanclature	1-11
1.2.6 Regulatory Intervals	1-12
1.3 Well Data – Plant Well No. 1 (WDW147)	1-13
1.3.1 Well Location - Plant Well No. 1 (WDW147)	1-13
1.3.2 Injection Program - Plant Well No. 1 (WDW147)	1-13
1.4 Well Data – Plant Well No. 2 (WDW319)	1-16
1.4.1 Well Location - Plant Well No. 2 (WDW319)	1-16
1.4.2 Injection Program - Plant Well No. 2 (WDW319)	1-16
1.5 Petition Quality Assurance/Quality Control (QA/QC)	1-19
1.5.1 Overview	1 10

	,	une 2019
1.5.2	Background	1-21
1.5.3	Project Task Description	1-28
1.5.4	Quality Objectives and Criteria	1-33
1.5.5	Data Generation and Acquisition	1-35
1.5.6	Document Control	1-47
1.5.7	Data Validation and Usability	1-49
REFEREN	NCES	1-53
	SECTION 2.0	
	SITE GEOLOGY	
2.0 Site Ge	eology	2-1
2.1 I	ntroduction	2-1
2.2 R	Regional Geology	2-2

2.6	Hydrogeologic Compatibility	2-61
2.6.1		
2.6.2		
2.7	Summary	
	ENCES	
	SECTION 3.0	
	FLOW AND CONTAINMENT MODELING	
3.0 Flow	and Containment Modeling	3-1 3
3.1	Summary	3-1
3.2	Introduction	3-2
3.3	Description of the Models	3-4
3.3.1	The DuPont Basic Plume Model	3-5
3.3.2	The DuPont Multilayer Pressure Model	3-5
3.3.3	The DuPont Multilayer Vertical Permeation Model	3-5
3.3.4	The DuPont Moleculary Diffusion Model	3-6
3.3.5	The DuPont 10,000-Year Waste Plume Model	3-8
3.4	Model Input Data and Soures	3-11
3.4.1	Location	3-11
3.4.2	Local and Regional Geology	3-12
3.4.3	Geologic Inputs to the Model	3-13
3.4.4	Layer Thickness	3-15
3.4.5	Transmissibility and Mobility	3-17
3.4	4.5.1 Layer Transmissibility in the DuPont Multilayer Pressure Model	3-18

3.4	.5.2	Layer Mobility in the DuPont 10,000-Year Waste Plume Model	. 3-19
3.4	.5.3	Aquiclude (confining shale) Layer Permeability	. 3-20
3.4.6	Por	osity	. 3-21
3.4	.6.1	Aquiclude (confining shale) Layer Porosity	. 3-21
3.4.7	Ori	ginal Formation Pressure	. 3-24
3.4.8	Cor	mpressibility	. 3-25
3.4	.8.1	Confining Shale Layer Compressibility	. 3-32
3.4.9	Ten	nperature, Total Dissolved Solids, Viscosity, and Specific Gravity	. 3-32
3.4	.9.1	Temperature	. 3-32
3.4	.9.2	Viscosity	. 3-33
3.4	.9.3	Specific Gravity	. 3-35
3.4.10) Lay	er Dispersion Characteristics	. 3-38
3.4	.10.1	Field Scale Dispersivities in DuPont 10,00-Year Waste Plume Model	. 3-39
3.4	.10.2	Multiplying Factor for Advective Dispersion in DuPont Basic Plume Model	1 3-40
3.4.11	Wa	ste Stream Characteristics	. 3-44
3.4	.11.1	Free Water Diffusion Coefficients	. 3-47
3.4	.11.2	Effective Diffusion Coefficients	. 3-49
3.4	.11.3	Concentration Reduction Factors	. 3-50
3.4.12	2 For	mation Characteristics	. 3-51
3.4	.12.1	Formation Dip Angle	. 3-51
3.4	.12.2	Formation Fluid Background Velocity	. 3-53
3.4.13	Bot	andary Conditions	. 3-54
3.4	.13.1	Renee-Lynchburg Fault Boundaries	. 3-54
3.4	.13.2	Clinton Dome Boundaries	. 3-55

3.4.1	3.2.1 Clinton Dome Boundaries – Case 1 Models	3-56
3.4.1	3.2.2 Clinton Dome Boundaries – Case 2 Models	3-59
3.4.13.3	Potential Sand Shale-out Boundaries	3-59
3.4.1	3.3.1 Frio B Sand	3-59
3.4.14 Wa	aste Disposal History	3-60
3.5 Mode	Strategy – Operational and 10,000-Year Models	3-68
3.5.1 Mo	odel Strategy - Operational Pressure Model	3-68
3.5.2 Mo	odel Strategy - Operational Plume Model	3-71
3.5.3 Mo	odel Strategy - Vertical Permeation Model	3-74
3.5.4 Mo	odel Strategy - 10,000-Year Vertical Model	3-74
3.5.5 Mo	odel Strategy - 10,000-Year Plume Model	3-74
3.5.5.1	Model Strategy – 10,000-Year Plume Model Computation Grid Area	3-77
3.6 Mode	l Calibration with Historic Data	3-78
3.6.1 Mo	del Calibrations with Formation Pressure - Frio A/B/C Injection Interval	3-80
3.6.1.1	Calibration Results, Case 1 – Sealed Fault A Model Case	3-80
3.6.1.2	Calibration Results, Case 2 – Open Fault Model Case	3-82
3.6.1.3	Static Calibration Results at Exxon Mobil	3-83
3.6.2 Mo	del Calibrations with Formation Pressure - Frio E&F Injection Interval	3-84
3.6.2.1	Calibration Results, Case 1 – Sealed Fault A Model Case	3-84
3.6.2.2	Calibration Results, Case 2 – Open Fault Model Case	3-85
3.6.2.3	Static Calibration Results at Exxon Mobil	3-87
3.7 Mode	l Results	3-88
3.7.1 Cu	rrent and Near Future Waste Distribution	3-88
3.7.1.1	Horizontal Extent	3-88

	3.7.1.1.1	Case 1 – Sealed Fault A Case Plume Models	3-88
	3.7.1.1.2	Case 2 – Open Fault Case Plume Models	3-89
:	3.7.1.2 Ve	rtical Extent	3-90
	3.7.1.3 Pre	essure Distribution within the Area of Review	3-90
	3.7.1.3.1	DuPont Multilayer Pressure Model Run Files	3-93
	3.7.1.3.2	Case 1 – Operational Pressure Buildup – Frio A/B/C Injection In	terval3-93
	3.7.1.3.3	Case 1 – Operational Pressure Buildup – Frio E&F Injection Inte	rval3-94
	3.7.1.3.4	Case 2 – Operational Pressure Buildup – Frio A/B/C Injection In	terval3-95
	3.7.1.3.5	Case 2 – Operational Pressure Buildup – Frio E&F Injection Inte	rval3-96
	3.7.1.3.6	DuPont Multilayer Pressure Model Summary	3-97
3.7	7.2 Post-Inj	jection Waste Distribution	3-97
	3.7.2.1 Pre	essure Recovery	3-97
	3.7.2.2 Ve	rtical Extent	3-98
	3.7.2.3 Но	rizontal Extent	3-101
	3.7.2.3.1	Horizontal Extent – Low Specific Gravity Plume	3-103
	3.7.2.3.2	Horizontal Extent – High Specific Gravity Plume	3-104
	3.7.2.3.3	Horiztonal Extent – Composite Plume	3-115
	3.7.2.3.4	Presentation of Lont-term Plumes on Geology Maps	3-116
3.8	Sensitivity	Analysis	3-117
3.9	Summary	of Results	3-118
FFFF	RENCES		3-120

SECTION 4.0

AREA OF REVIEW

4.0 Area of Review	4- 1
4.1 Summary	4-1
4.2 Introduction	4-4
4.3 Determination of the Area of Review	4-6
4.4 Artificial Penetrations in the Area of Review	4-11
4.4.1 2.5 - Mile Area of Review	4-11
4.4.2 Incomplete Records	4-11
4.4.3 Well Type	4-14
4.4.4 Rock Type	4-17
4.4.5 Drilling Methods and the Static Mud Column	4-19
4.4.6 Confining/Injection Zone Penetration	4-24
4.4.7 Extended Area of Review - Operational Plume	4-24
4.4.8 Extended Waste Plume Track	4-25
4.4.8.1 Extended Waste Plume Track - High Specific Gravity Plume	4-26
4.4.8.1 Extended Waste Plume Track - Low Specific Gravity Plume	4-27
4.5 Modeling Artificial Penetrations for Non-Endangerment	4-29
4.6 Modeling Wells Requiring Further Evaluation – No Migrations	4-35
REFERENCES	4-4(

SECTION 5.0

WELL CONSTRUCTION

5.0 WELL CONSTRUCTION	5-1
5.1 Plant Well No. 1 (WDW147)	5-2
5.1.1 Drilling	5-2
5.1.2 Well Design and Construction	5-2
5.1.3 Original Completion	5-3
5.1.4 Current Completion	5-4
5.1.5 Well History - Plant Well No. 1	5-4
5.2 Plant Well No. 2 (WDW319)	5-2
5.2.1 Drilling	5-10
5.2.2 Well Design and Construction	5-10
5.2.3 Original Completion	5-12
5.2.4 Current Completion	5-12
5.2.5 Well History - Plant Well No. 2	5-13
5.3 Well Materials Compatibility	5-18
5.3.1 Corrosion Introduction	5-18
5.3.2 Types of Corrosion	5-18
5.3.3 Factors Influencing Corrosiveness of Injection Well Environments	5-19
5.3.4 Corrosion Detection Measurements	5-21
5.3.5 Corrosion Control	5-22
5.3.6 Corrosion and Hazardous Injection Fluids	5-22
5.3.7 Compatibility Testing	5-23
DEFEDENCES	5 25

SECTION 6.0

WASTEWATER DESCRIPTION AND PETITION IMPLEMENTATION AND COMPLIANCE

6.0 WASTWASTE DESCRIPTION AND COMPLIANCE 6-1		
6.1 V	Wastewater Characterization	6-1
6.1.1	Regulatory Characterization of the Wastewater Streams	6-1
6.1.2	Current Sources of Injected Wastewater	6-3
6.1.3	Hazardous Wastes Subject to Federal Land Ban Restrictions	6-3
6.1.4	Hazardous Wastes Not Subject to Federal Land Ban Restrictions	6-4
6.1.5	Waste Stream pH and Maximum Specific Gravity	6-6
6.1.6	Maximum Monthly Volume	6-7
6.1.7	Average and Maximum Rates of Injection	6-7
6.1.8	Patterns of Injection	6-8
6.1.9	Injection Well Checklist	6-8
6.2	Waste Managment	6-9
6.2.1	Active Class I Injection Well Summary	6-9
6.2.2	Injected Waste Summary	6-9
6.2.3	Containment of Hazardous Waste in the Injection Zone	6-10
6.3 In	mplementation and Compliance	6-11
6.3.1	Storage Wastewater Flow, Collection and Storage	6-11
6.3.2	Monthly Injection Volume Compliance	6-12
6.3.3	Flow Allocation Implementation and Compliance	6-13
6.3.4	Specific Gravity Implementation and Compliance	6-14

6	.3.4.1	Specific Gravity Measurment and Calculation	6-14
6	.3.4.2	Cumulative Low Specific Gravity Waste Volume Limitation	6-15
6.3.	5 Annu	ual Presure Monitoring and Compliance	6-15
6.3.	6 Injec	tion Interval Pressure Buildup Compliance	6-16
6.3.	7 Injec	tion Interval Transmissivity and Mobility Implementation and Comp	liance 6-16
6.3.	8 Injec	ted Constituent Implementation and Compliance	6-16
		SECTION 7.0	
		SECTION 7.0 MECHANICAL INTEGRITY TESTING	
7.0 Med	hanic In		7-1
7.0 Med		MECHANICAL INTEGRITY TESTING	
	Introduc	MECHANICAL INTEGRITY TESTING	7-1
7.1	Introduce Plant W	MECHANICAL INTEGRITY TESTING Integrity Testing	7-1 7-2
7.1 7.2	Introduc Plant W 1 Mech	MECHANICAL INTEGRITY TESTING Integrity Testing	7-17-2
7.1 7.2 7.2.	Introduction Plant William Mechine Plant Western	MECHANICAL INTEGRITY TESTING Integrity Testing	7-17-27-2

REFERENCES......7-7

MASTER LIST OF FIGURES

Figure 1-1	Location Map for the Sasol Chemicals (USA), LLC Greens Bayou Plant
Figure 1-2	Topographic Location Map
Figure 1-3	Relative locations of Plant Well No. 2 (WDW319) to Plant Well No. 1 (WDW147)
Figure 1-4	Type Log with Regulatory Intervals for Plant Well No. 1 (WDW147)
Figure 1-5	Type Log with Regulatory Intervals for Plant Well No. 2 (WDW319)
Figure 2-1	Stratigraphic Column of the Texas Gulf Coast
Figure 2-2	Schematic Northwest-Southeast Cross Sections Showing Evolutionary Stages in the Formation of the Northern Gulf of Mexico and East Texas Basin (from Jackson and Galloway, 1984)
Figure 2-3	Distribution of Cretaceous and Cenozoic Continental Margins in the Northwestern Gulf of Mexico (from Jackson and Galloway, 1984)
Figure 2-4	Geology Map of Texas
Figure 2-5	Frio Depositional Systems (from Galloway et al., 1982)
Figure 2-6	Sandstone Composition - Frio Formation of the Texas Gulf Coast (from Bebout et al., 1978)
Figure 2-7	Principal Drainage Axes for the Chita-Corrigan Fluvial System (from Galloway et al., 1977)
Figure 2-8	Sandstone Composition - Catahoula Formation of the Texas Gulf Coast (from Ledger et al., 1984)
Figure 2-9	Lower Miocene Depositional Systems (from Galloway, 1985)
Figure 2-10a	Paleogeographic reconstruction of the maximum regressive episode represented by the middle Miocene (operational unit A). Map depicts the interpreted depositional systems immediately preceding the middle Miocene (<i>Textularia</i>

stapperi) relative rise in sea level and marine transgression (modified from Morton et al., 1988)

- Figure 2-10b Paleogeographic reconstruction of the maximum regressive episode represented by the upper Miocene (operational unit B). Map depicts the interpreted depositional systems immediately preceding the late Miocene (*Bigenerina A.*) relative rise in sea level and marine transgression (modified from Morton et al., 1988)
- Figure 2-11 Composite percent SS Map (from Morton et al., 1988)
- Figure 2-12 Major Aquifers within Texas
- Figure 2-13 Stratigraphic and Hydrologic Section C-C'
- Figure 2-14 Top of Frio (Injection Zone) Structure Map (modified from Galloway et al., 1982)
- Figure 2-15 Tectonic Features of Texas
- Figure 2-16 Regional NW-SE Structural/Stratigraphic Cross Sections 5-5' (Dodge & Posey, 1981)
- Figure 2-17 Regional NW-SE Structural/Stratigraphic Cross Sections 6-6' (Dodge & Posey, 1981)
- Figure 2-18 Regional NE-SW Structural/Stratigraphic Cross Section B'-B" (Dodge & Posey, 1981)
- Figure 2-19 Regional NE-SW Structural/Stratigraphic Cross Section C'-C" (Dodge & Posey, 1981)
- Figure 2-20 Seismic Risk Map (from USGS, 2014)
- Figure 2-21 Structure of a Gulf Coast Growth Fault (modified from Jackson and Galloway, 1984)
- Figure 2-22 Radial Faulting from Salt Structures Mapped on Top of the Frio Formation, from Port Arthur Area, Texas (from Jackson and Galloway, 1984)
- Figure 2-23 Cross Section Location Map

Figure 2-24	NW-SE Structural Cross Section
Figure 2-25	SW-NE Structural Cross Section
Figure 2-26	Structural Contour Map on the Anahuac Marker
Figure 2-27	Net Shale Isopach Map – Anahuac Formation Confining Zone
Figure 2-28	Structure Contour Map on the Vicksburg Marker
Figure 2-29	Gross Sand Isopach Map – Frio E&F Sand
Figure 2-30	Gross Sand Isopach Map – Frio A&B Sand
Figure 2-31	Gross Sand Isopach Map – Frio C Sand
Figure 2-32	Thickness of shale between the base of the Frio E&F Sand and the top of the Frio A&B Sand
Figure 2-33	Structure Contour Map on Top of the Frio E&F Sand
Figure 2-34	Surface Fault Pattern in the Houston Area
Figure 2-35	Fault seal and nonseal: (1) dragging of ductile clays into fault plane during faulting creates clay seal between two sandstones (A and B); (2) juxtaposition of reservoir to impermeable clay bed; and (3) sandstone-to-sandstone window or leak in fault plane creating possible spillpoint to migrating fluids (modified from Smith, 1980 and Downey, 1984)
Figure 2-36	Schematic cross section and presure profile of the Akaso G reservoirs (from Jev et al., 1993)
Figure 2-37	Gulf Coast Gas Field Example – Cross-Fault Pressure Communication
Figure 2-38	2015 Chicot Potentiometric Levels Harris County (Kasmarek et al., 215)
Figure 2-39	2015 Evangaline Potentiometric Levels Harris County (Kasmarek et al., 2015)
Figure 2-40	Structure Map - Base of USDW Structure Map (3-ohn-m Resistivity)
Figure 2-41	Variation of Total Dissolved Solids (TDS) at Sasol

Figure 3-1	General map of Sasol Greens Bayou Plant and East Houston Area Class I Injection Wells
Figure 3-2	Correlation of Lower Frio Sands at the Sasol Greens Bayou Plant
Figure 3-3	Structural Cross Section – Houston Ship Channel Area – Class I Injection Wells
Figure 3-4	Northwest-southeast Structural Cross Section from Sasol to the Houston Ship Channel Area Class I Injection Wells
Figure 3-5	Type Log of the Frio E&F Sand Injection Interval and the Frio A&B Sand and the Frio C Sand Injection Interval in the DuPont Multilayer Pressure Model
Figure 3-6	Temperature Profile with depth - Houston Area Injection Wells and Artificial Penetrations
Figure 3-7	Nomograph of Viscosity of NaCl Brines Variation with Temperature (data from Petroleum Engineering Handbook, 1987)
Figure 3-8	Daily and calculated three-whole month volume weighted injectate specific gravities at 20 $^{\circ}\text{C}$ reference temperature
Figure 3-9	Rate of geologic dip northwest of the Sasol Greens Bayou Plant and dip rates employed in the long-term Low Specific Gravity Plume Model
Figure 3-10	Cross Section C-C' from Baker (1979)
Figure 3-11	Case 1 – Sealed Fault A-A' Case Model Boundary Conditions
Figure 3-12	DuPont Basic Plume Model Streamlines for the Case 1 Frio A&B Sand and Frio C Sand Injection Interval Model
Figure 3-13	DuPont Basic Plume Model Streamlines for the Case 1 Frio E&F Sand Injection Interval Model
Figure 3-14	Case 2 – Open Case Transmissive Fault Model Set-up Boundary Conditions
Figure 3-15	Flowing bottomhole pressure calibration for the Frio A/B/C Sand - Sealed Fault Case 1 at a reference depth of 6,820.5 feet bgl in Plant Well 2 (WDW319)
Figure 3-16	Shut-in bottomhole pressure calibration for the Frio A/B/C Sand - Sealed Fault Case 1 at a reference depth of 6,820.5 feet bgl in Plant Well 2 (WDW319)

Figure 3-17	Flowing bottomhole pressure calibration for the Frio A/B/C Sand - Open Fault Case 2 at a reference depth of 6,820.5 feet bgl in Plant Well 2 (WDW319)
Figure 3-18	Shut-in bottomhole pressure calibration for the Frio A/B/C Sand - Open Fault Case 2 at a reference depth of 6,820.5 feet bgl in Plant Well 2 (WDW319)
Figure 3-19	Flowing bottomhole pressure calibration for the Frio A/B/C Sand - Sealed Fault Case 1 at a reference depth of 6,820.5 feet bgl in ExxonMobil Wells
Figure 3-20	Flowing bottomhole pressure calibration for the Frio A/B/C Sand - Open Fault Case 2 at a reference depth of 6,820.5 feet bgl in ExxonMobil Wells
Figure 3-21	Flowing bottomhole pressure calibration for the Frio E and F Sand - Sealed Fault Case 1 at a reference depth of 6,548 feet bgl in Plant Well 1 (WDW147)
Figure 3-22	Shut-in bottomhole pressure calibration for the Frio E and F Sand - Sealed Fault Case 1 at a reference depth of 6,548 feet bgl in Plant Well 1 (WDW147)
Figure 3-23	Flowing bottomhole pressure calibration for the Frio E and F Sand - Open Fault Case 2 at a reference depth of 6,548 feet bgl in Plant Well 1 (WDW147)
Figure 3-24	Shut-in bottomhole pressure calibration for the Frio E and F Sand - Sealed Fault Case 1 at a reference depth of 6,548 feet bgl in Plant Well 1 (WDW147)
Figure 3-25	Flowing bottomhole pressure calibration for the Frio E and F Sand - Sealed Fault Case 1 at a reference depth of 6,548 feet bgl in ExxonMobil Wells
Figure 3-26	Flowing bottomhole pressure calibration for the Frio E and F Sand - Open Fault Case 2 at a reference depth of 6,548 feet bgl at ExxonMobil's Wells
Figure 3-27	Maximum Operational Plume (MF=3.8) at year-end 2017 for the Frio E&F Sand, Case 1 - Sealed Fault A-A' Case
Figure 3-28	Maximum Operational Plume (MF=3.8) at year-end 2050 for the Frio E&F Sand, Case 1 - Sealed Fault A-A' Case
Figure 3-29	Maximum Operational Plume (MF=3.8) at year-end 2017 for the Frio A/B/C Sand, Case 1 - Sealed Fault A-A' Case

Figure 3-30	Maximum Operational Plume (MF=3.8) at year-end 2050 for the Frio A/B/C Sand, Case 1 - Sealed Fault A-A' Case
Figure 3-31	Maximum Operational Plume (MF=3.8) at year-end 2017 for the Frio E&F Sand, Case 2 - Open Fault Case
Figure 3-32	Maximum Operational Plume (MF=3.8) at year-end 2050 for the Frio E&F Sand, Case 2 - Open Fault Case
Figure 3-33	Maximum Operational Plume (MF=3.8) at year-end 2017 for the Frio A/B/C Sand, Case 2 - Open Fault Case
Figure 3-34	Maximum Operational Plume (MF=3.8) at year-end 2050 for the Frio A/B/C Sand, Case 2 - Open Fault Case
Figure 3-35	Modeled upward permeation of injectate and formation brine above the Frio E and F Sand - Sealed Fault Case 1 at Plant Well 1 (WDW147)
Figure 3-36	Pressure Contour Plot in the Frio A/B/C Sand - Case 1 – Sealed Fault Case at Year-end 2017 with Historical Injection
Figure 3-37	Pressure Contour Plot in the Frio A/B/C Sand - Case 1 – Sealed Fault Case at Year-end 2050 w/Projected Injection - 750 gpm into Plant Well No. 2 (WDW-319)
Figure 3-38	Modeled pressure increase graph at a rate of 750 gpm in the Frio A/B/C Sand - Sealed Fault Case 1 at a reference depth of 6,820.5 feet bgl in Plant Well 2 (WDW319)
Figure 3-39	Pressure Contour Plot in the Frio E&F Sand - Case 1 – Sealed Fault Case at Year-end 2017 with Historical Injection
Figure 3-40	Pressure Contour Plot in the Frio E&F Sand - Case 1 – Sealed Fault Case at Year end 2050 w/Projected Injection - 750 gpm into Plant Well No. 1 (WDW-147)
Figure 3-41	Modeled pressure increase graph at a rate of 750 gpm in the Frio E and F Sand - Sealed Fault Case 1 at a reference depth of 6,548 feet bgl in Plant Well 1 (WDW147)

Figure 3-42 Pressure Contour Plot in the Frio A/B/C Sand - Case 2 - Open Fault Case at Yearend 2017 with Historical Injection Figure 3-43 Pressure Contour Plot in the Frio A/B/C Sand - Case 2 - Open Fault Case at Yearend 2050 w/Projected Injection - 750 gpm into Plant Well No. 2 (WDW-319) Figure 3-44 Modeled pressure increase graph at a rate of 750 gpm in the Frio A/B/C Sand -Open Fault Case 2 at a reference depth of 6,820.5 feet bgl in Plant Well 2 (WDW319) Figure 3-45 Pressure Contour Plot in the Frio E&F Sand - Case 2 – Open Fault Case at Yearend 2017 with Historical Injection Figure 3-46 Pressure Contour Plot in the Frio E&F Sand - Case 2 – Open Fault Case at Yearend 2050 w/Projected Injection - 750 gpm into Plant Well No. 1 (WDW-147) Figure 3-47 Modeled pressure increase graph at a rate of 750 gpm in the Frio E and F Sand -Open Fault Case 2 at a reference depth of 6,548 feet bgl in Plant Well 1 (WDW147) Figure 3-48 Fluid specific gravity as a function of concentration reduction factor within the Low Specific Gravity Plume Figure 3-49 Calculated drift velocity as a function of concentration reduction factor within the Low Specific Gravity Plume Figure 3-50 Relationship between concentration reduction factor and plume drift potential in the Low Specific Gravity Plume Figure 3-51 Low Specific Gravity Plume generated with a cumulative injection volume from 2006 of 3.945 billion gallons using a maximum dispersivity characteristic of movement to Clinton Dome of 216 feet Figure 3-52 Schematic cross section illustrating the area available for low specific gravity waste Figure 3-53 Sand thickness in the Frio E&F Sand available for waste above the structural spill point contour on the up-thrown (high) side of Fault "a"

Figure 3-54 Sand thickness in the Frio E&F Sand available for waste above the structural spill point contour on the down-thrown (low) side of Fault "a" Figure 3-55 Computation of the available volume in the Frio E&F sand above the structural spill point contour on the up-thrown (high) side of Fault "a" using the horizontal slice method Figure 3-56 Computation of the available volume in the Frio E&F sand above the structural spill point contour on the down-thrown (low) side of Fault "a" in Segment A using the horizontal slice method Figure 3-57 Computation of the available volume in the Frio E&F sand above the structural spill point contour on the down-thrown (low) side of Fault "a" in Segment B using the horizontal slice method Figure 3-58 Sand thickness in the Frio A&B Sand available for waste above the structural spill point contour on the up-thrown (high) side of Fault "a" Figure 3-59 Sand thickness in the Frio A&B Sand available for waste above the structural spill point contour on the down-thrown (low) side of Fault "a" Figure 3-60 Computation of the available volume in the Frio A&B sand above the structural spill point contour on the up-thrown (high) side of Fault "a" using the horizontal slice method Figure 3-61 Computation of the available volume in the Frio A&B sand above the structural spill point contour on the down-thrown (low) side of Fault "a" in Segment A using the horizontal slice method Figure 3-62 Computation of the available volume in the Frio A&B sand above the structural spill point contour on the down-thrown (low) side of Fault "a" in Segment B using the horizontal slice method Figure 3-63 Sand thickness in the Frio C Sand available for waste above the structural spill point contour on the up-thrown (high) side of Fault "a" Figure 3-64 Sand thickness in the Frio C Sand available for waste above the structural spill point contour on the down-thrown (low) side of Fault "a"

Figure 3-65	Computation of the available volume in the Frio C sand above the structural spill point contour on the up-thrown (high) side of Fault "a" using the horizontal slice method
Figure 3-66	Computation of the available volume in the Frio C sand above the structural spill point contour on the down-thrown (low) side of Fault "a" in Segment A using the horizontal slice method
Figure 3-67	Computation of the available volume in the Frio C sand above the structural spill point contour on the down-thrown (low) side of Fault "a" in Segment B using the horizontal slice method
Figure 3-68	Sand thickness in the Frio D Sand available for waste above the structural spill point contour of $-5,700$ feet msl
Figure 3-69	Sand thickness in the Frio E&F Sand available for waste above the structural spill point contour of $-5,700$ feet msl in the Frio D Sand
Figure 3-70	Computation of the available volume in the Frio D sand above the $-5,700$ foot contour using the horizontal slice method
Figure 3-71	Computation of the available volume in the Frio E&F sand above the $-5,700$ -foot contour using the horizontal slice method
Figure 3-72	DuPont 10,000-Year Waste Plume Model results at year-end 2050 and at the end of the 200-year evaluation time period – High Specific Gravity Plume
Figure 3-73	Composite results of the Long-term Waste Plume modeling
Figure 3-74	Long-term plumes on the top of the Frio E&F Sand Structure Map
Figure 3-75	Long-term plumes on the Frio E&F Sand Isopach Map
Figure 3-76	Long-term plumes on the Frio A/B Sand Isopach Map
Figure 3-77	Long-term plumes on the Frio C Sand Isopach Map
Figure 4-1	Cone of Influence Allowable Buildup Pressure and the Modeled Pressure Profile Case 1 – Sealed Fault A Case in the Frio E and F Sand Injection Interval at Yearend 2050 with 750 gpm into Plant Well No. 1 (WDW147).

Figure 4-2 Cone of Influence Allowable Buildup Pressure and the Modeled Pressure Profile Case 1 – Sealed Fault A Case in the Frio A/B/C Sand Injection Interval at Year-end 2050 with 750 gpm into Plant Well No. 2 (WDW319) Figure 4-3 Cone of Influence Allowable Buildup Pressure and the Modeled Pressure Increase Profile Case 1 – Open Fault Case in the Frio E&F Sand Injection Interval at Yearend 2050 with maximum injection (750 gpm) into Injection Well No. 1 (WDW147). Figure 4-4 Cone of Influence Allowable Buildup Pressure and the Modeled Pressure Profile Case 2 – Open Fault A Case in the Frio A/B/C Sand Injection Interval at Year-end 2050 with 750 gpm into Plant Well No. 2 (WDW319). Figure 4-5 Artificial Penetrations in the 2.5-mile Radius Area of Review and Extended Area of Review and Plumes Figure 4-6 Operational and Long-Term Waste Plume Track for the Frio A/B/C Sand Injection Interval Figure 4-7 Clinton Dome Detailed Artificial Penetration Location Map Figure 5-1 Plant Well No. 1 (WDW147) Completion Schematic Figure 5-2 Plant Well No. 2 (WDW319) Completion Schematic Figure 6-1 Location of Waste Treatment, Storage and Disposal Facilities Waste Storage and Pre-Injection Treatment System Figure 6-2 Figure 6-3 Time-series graph of daily and three-whole calendar month volume weighted average specific gravity measured at 20 °F (January 2001 through December 2018)

MASTER LIST OF TABLES

Table 2-1	Critical Pressure Buildup Needed to Induce Seismicity
Table 2-2	Typical Sedimentary Shale Compositions
Table 2-3	Average X-Ray Diffraction Results - Lower Frio Formation
Table 2-4	Chemical Analysis of the Lower Frio Formation Fluids
Table 2-5	Calculated Fracture Gradients and Fracture Pressures
Table 3-1	Model Input Parameters – Operational Pressure Model
Table 3-2	Frio Injection Interval Sand Thicknesses Used in the Operational Plume Modeling and Post-Operational Plume Modeling
Table 3-3	Injection/Falloff Tests – Measured Reservoir Transmissibilities – Frio A/B/C Sand Injection Interval and Frio E&F Sand Injection Interval
Table 3-4	Shale Core Vertical Permeabilities – Arkema, Plant Well 2 (WDW230)
Table 3-5	Frio Injection Interval Sands – Modeled Porosities.
Table 3-6	Operational Model Fluid Properties Summary.
Table 3-7	Calculation of Lower Frio Sand Multiplying Factor for Input into DuPont Basic Plume Model
Table 3-8	Frio Injection Interval Sands – Calculated Gaussian and Modeled Multiplying Factors – Operational DuPont Basic Plume Model.
Table 3-9	Modeled Free Water and Effective Shale Diffusivities for the Constituents of Concern
Table 3-10	Concentration Reduction Factors and Molecular Diffusion Critical Constituent Parameters.
Table 3-11	Modeled Class I and Class II Lower Frio Injection Wells – Completion Histories
Table 3-12	Distances Between Injection Wells in the Operational Models.
Table 3-13	Projected Cumulative Injection Rates Through Year-End 2050 in the Frio A/B/C Sand.

Table 3-14	Projected Cumulative Injection Rates Through Year-End 2050 in the Frio E&F Sand.
Table 3-15	Modeled Nominal Plume Diameters – DuPont Basic Plume Model.
Table 3-16	Annual Model Predicted Formation Pressures in the Frio Injection Interval Sands.
Table 3-17	$10{,}000 \; {\rm Year} \; {\rm Waste} \; {\rm Plume} \; {\rm Model} \; {\rm Inputs} - {\rm Low} \; {\rm Specific} \; {\rm Gravity} \; {\rm Long\text{-}term} \; {\rm Model} \; {\rm Inputs}$
Table 3-18	DuPont 10,000 Year Waste Plume Model Inputs – High Specific Gravity Long-term Model Inputs
Table 3-19	Relative Concentration Reduction Versus Fluid Density
Table 3-20	Determination of Plume Drift Rate for Specific Plume Points
Table 3-21	Available Closure Volumes at Clinton Dome
Table 3-22	Available Closure Volumes at Clinton Dome – Sensitivity Case
Table 4-1	Parameters used in Calculating the Cone of Influence
Table 4-2	Maximum Pressure Increases at 2.5-mile Radius from Sasol Chemicals (USA),
	LLC, Greens Bayou Plant Wells Nos. 1 (WDW147) and 2 (WDW319)
Table 4-3a	Artificial Penetrations in the 2.5-mile Radius Area of Review.
Table 4-3b	Artificial Penetrations in the Extended Area of Review (Operational Plume)
Table 4-4	Artificial Penetrations within the Modeled Long-term Plume Track
Table 4-5	Molecular Diffusion Transport Distances
Table 5-1	Casing and Tubing Dimensions and Parameters – Plant Well No. 1 (WDW147)
Table 5-2	Cementing Data – Plant Well No. 1 (WDW147)
Table 5-3	Casing and Tubing Dimensions and Parameters – Plant Well No. 2 (WDW319)
Table 5-4	Cementing Data – Plant Well No. 2 (WDW319)
Table 5-5	Class I Injection Chemicals and Corrosion Effects
Table 6-1	Waste Management Information

Table 6-2	Average and Maximum Rates of Injection at the Sasol Chemicals (USA), LLC Greens Bayou Plant
Table 6-3	Injection Well Checklist
Table 6-4	Modeled Maximum Pressure Increase at the Injection Wells
Table 6-5	Modeled Inputs for the Annual Testing Demonstration

MASTER LIST OF APPENDICES

Appendix 1-1	Typical Waste Stream Well Feed Composition and Recent Waste Stream Analysis (2018)
Appendix 1-2	Approval Letters for Hazardous Waste Disposal Restrictions Petition Exemptions Sasol Chemicals (USA), LLC Greens Bayou Plant
Appendix 1-3	Current Texas Commission on Environmental Quality - Underground Injection Control Permits
Appendix 1-4	Landowner and Mineral Owner Information
Appendix 2-1	Cambe Regional Structure Map
Appendix 2-2	Listing of Earthquake Data
Appendix 2-3	Annotated Logs Injection Well Logs WDW147 and WDW319
Appendix 2-4	Annotated Cross Section Well Logs
Appendix 2-5	Detailed Clinton Dome Cross Sections and Logs
Appendix 2-6	Detailed Stratigraphic Correlations of the Injection Interval Sands in the 2.5-Mile Radius Area of Review
Appendix 2-7	Stratigraphic Correlation of the Injection Interval Sands to Clinton Dome
Appendix 2-8	Detailed Clinton Dome Structure Maps
Appendix 2-9	Detailed Clinton Dome Isopach Maps
Appendix 2-10	Field Structure Maps – Miocene 3,800' Sand
Appendix 2-11	Determination of the Base of the Lowermost USDW
Appendix 2-12	2018 Tabulation of Water Wells
Appendix 3-1	DuPont Basic Plume Model
Appendix 3-2	DuPont Multilayer Pressure Model

Appendix 3-3	DuPont Vertical Permeation Model
Appendix 3-4	DuPont Molecular Diffusion Model
Appendix 3-5	DuPont 10,000-Year Waste Plume Model
Appendix 3-6	Determination of Model Input Data
Appendix 3-7	DuPont Multilayer Pressure Model Calibration Input and Output Files
Appendix 3-8	DuPont Multilayer Pressure Model Projected Year End 2050 Model Input and Output Files
Appendix 3-9	DuPont Vertical Permeation Model Projected Year End 2050 Model Input and Output Files – Projected Vertical Permeation Files
Appendix 3-10	DuPont Basic Plume Model Projected Year End 2050 Model Input and Output Files – Projected Plume Files
Appendix 3-11	DuPont 10,000 Year Model Long-term Input and Output Files
Appendix 4-1	Artificial Penetration Protocol
Appendix 4-2	Artificial Penetration Well Records in the Area of Review
Appendix 4-3	Artificial Penetration Well Records in the Extended Area of Review
Appendix 4-4	Artificial Penetration Well Records in the Long-term Plume Track
Appendix 5-1	Current Texas Commission on Environmental Quality Underground Injection Control Permits
Appendix 5-2	Cement and Annular Volume Calculations
Appendix 5-3	Plant Well Deviation Surveys
Appendix 5-4	Plant Well Tubular Stress Calculations
Appendix 6-1	Sasol Chemicals (USA), LLC 2018 Waste Stream Analysis Report
Appendix 6-2	Specific Gravity Measurement Procedures

Appendix 6-3	Waste Stream Specific Gravity Compliance Program
Appendix 6-4	Annual Well Pressure Transient Testing and Reporting Program
Appendix 7-1	Plant Well 1 (WDW147) - 2018 Annulus Pressure Test Chart
Appendix 7-2	Plant Well 1 (WDW147) – 2018 Radioactive Tracer Log
Appendix 7-3	Plant Well 2 (WDW319) – 2018 Annulus Pressure Test Chart
Appendix 7-4	Plant Well 2 (WDW319) - 2018 Radioactive Tracer Log